系统架构师:软件开发方法「软件生命周期、软件开发模型」
一.软件生命周期 软件生命周期也就是软件生存的周期。同万物一样,软件也有诞生和消亡,软件生命周期就是指软件自开始构思与研发到不再使用而消亡的过程。有关软件生命周期的阶段划分,不同的标准有不同的规定。软件生命周期划分为 8 个阶段:可行性研究与计划、需求分析、概要设计、详细设计、实现、集成测试、确认测试、使用和维护。 二.软件开发模型 1.瀑布模型 瀑布模型认为,软件开发是一个阶段化的精确过程。软件要经过需求分析、总体设计、详细设计、编码与调试、集成测试和系统测试阶段才能够被准确地实现。每一阶段都有回到前一阶段的反馈线,这指的是,在软件开发中当在后续阶段发现缺陷时,可以把这个缺陷反馈到上一阶段进行修正。 瀑布模型的一个重要特点:软件开发的阶段划分是明确的,一个阶段到下一个阶段有明显的界线。在每个阶段结束后,都会有固定的文档或源程序流入下一阶段。因此也称瀑布模型是面向文档的软件开发模型。 当软件需求明确、稳定时,可以采用瀑布模型按部就班地开发软件,当软件需求不明确或变动剧烈时,瀑布模型中往往要到测试阶段才会暴露出需求的缺陷,造成后期修改代价太大,难以控制开发的风险。 2.瀑布 V 模型 瀑布 V 模型是瀑布模型的一种变体。随着对瀑布模型的应用,人们发现,缺陷是无法避免的,任何一个阶段都会在软件中引入缺陷,而最后的测试也不能保证软件完全没有缺陷,只能争取在交付前发现更多的缺陷。测试成为软件开发中非常重要的环节,测试的质量直接影响到软件的质量。因此,人们对瀑布模型进行了小小的更改,提出了更强调测试的瀑布 V 模型。 瀑布模型的缺点 3.演化模型 在应用软件开发的过程中,开发者很难一次性完全理解用户的需求、设计出完美的架构,开发出可用的系统,这是由于人的认知本身就是一个过程,这个过程是渐进的、不断深化的。对于复杂问题,“做两次”肯定能够做得更好。那么,对于软件开发这个复杂而且与人的认知过程紧密相关的事也应该是一个渐进的过程。演化模型正是基于这个观点提出的。一般情况下,一个演化模型可以看做若干次瀑布模型的迭代,当完成一个瀑布模型后,重新进入下一个迭代周期,软件在这样的迭代过程中得以演化、完善。根据不同的迭代特点,演化模型可以演变为螺旋模型、增量模型和原型法开发。 4.螺旋模型 螺旋模型将瀑布模型和演化模型结合起来,不仅体现了两个模型的优点,而且还强调了其他模型均忽略的风险分析。螺旋模型的每一周期都包括需求定义、风险分析、工程实现和评审 4 个阶段,由这 4 个阶段进行迭代,软件开发过程每迭代一次,软件开发就前进一个层次。 与瀑布模型相比,螺旋模型支持用户需求的动态变化,为用户参与软件开发的所有关键决策提供了方便,有助于提高目标软件的适应能力,为项目管理人员及时调整管理决策提供了便利,从而降低了软件开发风险。 但是,不能说螺旋模型绝对比其他模型优越,事实上,螺旋模型也有其自身的缺点: 5.增量模型 在系统的技术架构成熟、风险较低的时候,可以采用增量的方式进行系统开发,这样可以提前进行集成测试和系统测试,缩短初始版本的发布周期,提高用户对系统的可见度。 对于增量模型,通常有两种策略。一是增量发布的办法。即首先做好系统的分析和设计工作,然后将系统划分为若干不同的版本,每一个版本都是一个完整的系统,后一版本以前一版本为基础进行开发,扩充前一版本的功能。在这种策略中,第一版本往往是系统的核心功能,可以满足用户最基本的需求,随着增量的发布,系统的功能逐步地丰富、完善起来。用户在很短的时间内就可以得到系统的初始版本并进行试用。试用中的问题可以很快地反馈到后续开发中,从而降低了系统的风险。在应用增量模型中需要注意: 另一种策略是原型法。同增量发布不同,原型法的每一次迭代都经过一个完整的生命周期。当用户需求很不明确或技术架构中存在很多不可知因素的时候,可以采用原型法。在初始的原型中,针对一般性的用户需求进行快速实现,并不考虑算法的合理性或系统的稳定性。这个原型的主要目的是获得精确的用户需求,或验证架构的可用性。一般情况下,会在后面的开发中抛弃这个原型,重新实现完整的系统。 6.构件组装模型 随着软构件技术的发展,人们开始尝试利用软构件进行搭积木式的开发,即构件组装模型。在构建组装模型中,当经过需求分析定义出软件功能后,将对构件的组装结构进行设计,将系统划分成一组构件的集合,明确构件之间的关系。在确定了系统构件后,则将独立完成每一个构件,这时既可以开发软件构件,也可以重用已有的构件,当然也可以购买或选用第三方的构件。构件是独立的、自包容的,因此架构的开发也是独立的,构件之间通过接口相互协作。 构件组装模型的优点: 构件组装模型的缺点:
留言